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Morphological malformations are one of the factors con-
tributing to amphibian declines worldwide. There is grow-
ing evidence that these are boosted by altered ecological 
conditions like increased UV-B radiation, parasite infec-
tions, and pollution (e.g., Blaustein et al. 1997, Johnson 
et al. 2001). Recent advances in molecular techniques to-
day facilitate more in-depth studies of inbreeding, i.e., the 
union of consanguineous gametes that can lead to a signifi-
cant decrease in fitness by favouring the expression of reces-
sive deleterious alleles in homozygotes (Keller & Waller 
2002, Charlesworth & Willis 2009). Such reduction in 
genetic diversity can similarly promote the occurrence of 
morphological malformations in natural populations of 
many different taxa like fishes (Afonso et al. 2000), mam-
mals (Mansfield & Land 2002), reptiles (Olsson et al. 
1996), and amphibians (Williams et al. 2008).

Water frogs of the genus Pelophylax Fitzinger, 1843 
(Anura, Ranidae) offer a unique opportunity for study-
ing relationships between the onset of body malformations 
and inbreeding. Some species indeed exhibit a peculiar re-
productive mode called hybridogenesis (Schultz 1969) in 
which two different parental species crossbreed to produce 
a fertile hybrid (hemiclone) that will carry the genomes of 
both parental species in its somatic cells and produce hap-
loid gametes that only carry one non-recombinant paren-
tal genome. In eastern and central Europe, the Pelophylax 
esculentus complex (Frost et al. 2006) occurs, which in-
volves two parental species: Pelophylax lessonae (Camer-
ano, 1882) and Pelophylax ridibundus (Pallas, 1771), and 
their fertile hybrid P. klepton esculentus (Linnaeus, 1758) 
(Berger 1988). Prior to meiosis, P. kl. esculentus eliminates 
the P. lessonae genome (Borkin et al. 1979, Tunner & Hep-
pich 1981), transmitting the P. ridibundus genome clonally. 
In northern Italy, P. kl. esculentus naturally coexists with 
P. lessonae in the so-called L-E system (Uzzel et al. 1976). 
Here, the fertile hybrid mates with the parental species 
to maintain the hybrid condition in each generation (Pa-

gano et al. 1997), thus masking deleterious recessive alle-
les carried by the non-recombinant R genome via perma-
nent heterozygosity with the host parental species (Berger 
1967, Graf & Müller 1979, Graf & Polls-Pelaz 1989, 
Vorburger 2001).

As a result, natural mating between two hybrids in L-E 
systems typically leads to non-viable RR tadpoles (individ-
uals that carry two clonally transmitted ridibundus genom-
es), as is evidenced by the absence of adult, and in most 
cases of metamorphosed juvenile P. ridibundus in L-E sys-
tems throughout their range, and the production of non-
viable offspring, with high mortality rates during the early 
tadpole developmental stages (97%; Berger 1967, Graf & 
Polls-Pelaz 1989). Genomic interactions between differ-
ent hemiclones instead lead to less negative outcomes (in 
terms of larval development and metamorphosis) accord-
ing to the cross-specific expression of recessive deleterious 
mutations (Guex et al. 2002).

Here, we report the occurrence of a higher mortality 
rate and abnormal development, i.e., the incidence of an 
external morphological malformation in tadpoles gener-
ated by crossings between identical P. kl. esculentus same 
hemiclones from the same population in comparison with 
offspring resulting from crossbreeding between different 
hemiclones sampled from different populations.

Adult frogs were caught in the field from two differ-
ent populations in northwestern Italy (Lombardy). Sam-
pling sites were selected according to previous knowledge 
on the distribution of native taxa, to avoid collecting alien 
individuals or their hybrids (Bellati et al. 2012). Specifi-
cally, sampling was carried out at a lowland site (S1, Ber-
nate Ticino: 45.47 N, 8.80 E, 120 m a.s.l.) and a highland 
site (S2, Armelio Mt.: 44.73 N, 9.45 E, 1025 m a.s.l.) during 
the peak of the reproductive season, which may last from 
late March through May depending on altitude; Lanza et 
al. 2007). Frogs were collected by hand or net using torch-
lights at night, and assigned to native taxa based on their 
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morphologies. In the field, specimens were measured with 
digital callipers (± 1.0 mm), and subadults (SVL, snout–
vent length, < 60 mm; Lanza et al. 2007) were immedi-
ately released at their capture sites.

Adult frogs, two males (ABZC03417 from population 
S1 and ABZC03311 from population S2) and one female 
(ABZC03430 from population S1) were transferred to the 
laboratory and housed in plastic tanks filled with matured 
tap water, outfitted with bricks and leaves as shelters, exter-
nal filters (EHEIM ecco pro 200, EHEIM, Germany), and a 
UV-B lamp (2.0%, Sera, Germany) each. The frogs were fed 
daily with live crickets (Acheta domestica) and meal beetles 
(Tenebrio molitor), fortified with a calcium and vitamin D3 
supplement (ZooMed, California, USA). Prior to their be-
ing accommodated thus, we toe-clipped the individuals to 
individualize them and collect biological samples for sub-
sequent molecular analysis.

Genomic DNA was extracted using a commercial kit 
(Sigma-Aldrich, Saint Louis, USA) following manufactur-
er’s instructions. Because members of this genus are diffi-
cult to identify morphologically and to confirm their phe-
notypic assignment, we firstly amplified the mitochondrial 
gene, encoding for NADH dehydrogenase subunit 3 (ND3, 
340 base pairs in length), which discriminates between dis-
tinct Pelophylax taxa (Plötner et al. 2008). Amplifications 
were set up using 0.5 U of HotStart Taq DNA Polymerase 
(biotechrabbit GmbH, Hennigsdorf, Germany) and pub-
lished primer pairs (Plötner et al. 2008). PCR products 
were sequenced externally (Eurofins Genomics, Ebersberg, 
Germany). Raw electropherograms were visually checked 
to exclude the presence of double peaks and translated into 
amino acids using Geneious v11 (Kearse et al. 2012) to de-
tect possible premature stop codons suggesting the pres-
ence of pseudogenes. Aligned sequences were compared 
in GenBank (https://www.ncbi.nlm.nih.gov/) using the 
BLAST (Basic Local Alignment Search Tool, https://blast.
ncbi.nlm.nih.gov/Blast.cgi) algorithm to infer mitochon-
drial species assignment.

As P. kl. esculentus carries a lessonae-type mtDNA in 
Italian populations of the L-E system, we also screened 9 
codominant microsatellite markers that, according to the 
literature (Garner et al. 2000, Zeisset et al. 2000, Ario
li 2007, Christiansen & Reyer 2009), are known to am-
plify only the lessonae-type genome (L-DNA), or only 
the ridibundus-type genome (R-DNA), or both. Prior to 
sequencing, the PCR products were combined in three 
mixes based on the mean lengths of alleles and dyes. Runs 
were performed externally (by Eurofins Genomics). Raw 
sequencing outputs were visually checked using Geneious 
to detect the presence genome-specific allele fragments. 
Allele dimensioning was performed with the same soft-
ware.

According to our genetic analysis, the collected speci-
mens were referable to the native L-E system, as ND3 se-
quences (Accession Numbers: MK124580-2) matched at 
100% probability sequence AM749726 from northern It-
aly (P. lessonae, Italy: Carbonare; Plötner et al. 2008). 
Moreover, they were referable to P. kl. esculentus accord-

ing to their nuclear genotypes, i.e., all loci were success-
fully amplified but only those assumed to be non-selective 
for the L- or R-genomes turned out to be heterozygotes. 
More precisely, genotypes from S1 (from male ABZC03417 
and female ABZC03430) exhibited perfect allele-sharing 
at nuclear loci, attesting both individuals sharing the same 
hemiclone. In contrast, alleles of male ABZC03311 from 
population S2 were nearly entirely private, suggesting it 
was representative of a distinct hemiclone.

Breeder specimens were crossed in vitro following 
Berger’s protocol (Berger et al. 1994) with minor modi-
fications to optimise usage of clutches and sperm suspen-
sions (Bellati et al. unpubl. data). Before manipulations, 
males were euthanised by immersion in a MS-222 water 
bath solution (0.5g/l). Mature eggs were obtained by gently 
pressing the female’s venter.

Crossings were performed on 4 July 2017, and hatching 
occurred one week later, on 10 July 2017 (determined when 
50% of the tadpoles had hatched from their eggs). A total 
of 150 viable tadpoles were selected from each crossing, di-
vided into three replicates (50 tadpoles each), and raised 
indoors in plastic tanks filled with 10 litres of matured 
tap water under natural daylight conditions. Temperature 
was checked daily using a digital thermometer (±  0.1°C, 
Greisinger Electronic, Germany) to ensure homogene-
ity between tanks. Tadpoles were monitored daily to as-
sess hatching dates and developmental stages according 
to Gosner (1960). After reaching stage 28, tadpoles were 
fed with dry rabbit food, and monitored for 80 days, which 
corresponds to the period required for native water frog 
tadpoles to reach metamorphosis according to literature 
(Lanza et al. 2007). Both malformation and death rates 
were recorded 42 days after hatching date (corresponding 
to Gosner stage 30 in our experimental offspring) and at 
the end of the observation period on 21 September 2017 
(corresponding to Gosner stage 36). Under our standard-
ized housing conditions, none of the individuals reached 
metamorphosis.

The level of mortality during the monitoring period 
was investigated using the two-sample Student’s t-test. We 
observed a significantly higher mortality rate in tadpoles 
generated by the crossing between individuals from the 
same population (Crossing 1) than those by Crossing 2 in 
both observation trials (42 dd: t = 13.868, p = < 0.05; 84 dd: 
t = 10.076, p = < 0.05; Table 1). Much more interestingly, 
though, tadpoles generated by Crossing 1 (parents from the 
same population) showed a high malformation rate (bent 
tail, Fig. 1), whereas none of those generated by individuals 
from different populations (Crossing 2) exhibited tail mal-
formations (Fig. 2).

The lower mortality rates in crossbreeds between differ-
ent hemiclones of P. kl. esculentus sampled in geographi-
cally isolated populations suggests that the combination 
of sufficiently differentiated parental genomes may lim-
it the expression of deleterious mutations in the RR off-
spring. This conclusion is in agreement with previous stud-
ies, in which, however, a positive effect of heterozygosity 
in RR offspring was reported only for crossbreeds between 
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deeply evolutionary differentiated lineages of P. kl. esculen-
tus (from Switzerland and Sicily, respectively; Guex et al. 
2002).

The main outcome of our experiment concerned the 
striking difference in the frequency of aberrant develop-
ment of the tail in the cross between identical hemiclones 
(Crossing 1). Noteworthy here is that the same rate of aber-
rant individuals per tank (85% of the tadpoles) was record-
ed in each tank during the first trial. At that time, tadpoles 
were at Gosner’s stage 30, i.e., they had just reached the 
free-swimming and foraging stage, so that the potential in-
fluence of environmental factors (mainly ‘food’ under our 
controlled conditions) could be considered negligible. This 
further supports the hypothesis that this particular mal-
formation should be genetically based. Malformation rates 
changed slightly during the second trial (56, 77 and 81%, re-
spectively) as a result of different mortalities in each tank.

Tail malformation can compromise the fitness of tad-
poles in several ways. First of all, abnormal individuals suf-
fer from greatly reduced swimming skills, resulting in ob-
vious handicaps that will affect their feeding and capability 
of escaping threats. Moreover, it goes along with other mal-
formations in the whole body plan and faulty organogen-
esis. Although our conclusions are drawn from the results 
of a single parental crossbreed each, the role of inbreeding 
in driving bent-tail malformation appears to be unques-
tionable, since the same female was mated with different 
males, excluding possible maternal effects on tadpole de-
velopment between clutches. In addition, tadpoles were 
raised together under standardized housing conditions. 

In conclusion, our results add knowledge to our under-
standing of the genetic basis of a phenotypically aberrant 
phenotype (bent tail) in tadpoles, and further support pre-
vious conclusions that inbreeding may be a strong causal 
factor that will determine mortality rates and the expres-
sion of developmental abnormalities in wild amphibian 
populations.
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